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Soliton generation and nonlinear wave propagation

By J.B. KELLER

Departments of Mathematics and Mechanical Engineering, Stanford University,
Stanford, California 94305, U.S.A.

Soliton generation by various means is described. First, experimental results of
J. V. Wehausen and coworkers on solitons generated by a ship model in a towing tank
are presented. Then T. Y. Wu’s related Boussinesq system of equations for shallow
water motion with a moving pressure disturbance on the free surface is introduced.
Numerical solutions of this system by D. M. Wu and T. Y. Wu are shown to compare
well with the experimental results. Similar numerical results on an initial-boundary
value problem for the K.d.V. equation by C. K. Chu and coworkers are presented,
which also yield soliton generation. Then J. P. Keener and J. Rinzel’s analysis of pulse
generation in the Fitzhugh-Naqumo model of nerve conduction is described. Next,
G. B. Whitham’s modulation theory of nonlinear wave propagation is explained and
the problem of relating its results to initial and boundary data is mentioned.
Asymptotic methods for solving this problem for the K.d.V. equation are described.
They include the Lax—Levermore theory for the case of small dispersion, its extension
by S. Venakides, and the centered simple wave solution of the modulation equations
by A. V. Gurevitch and L. P. Pitaevskii. Finally, the theory of weakly nonlinear waves
of Choquet-Bruhat and of J. K. Hunter and the present author is described.
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1. INTRODUCTION

The nonlinear partial differential equations that govern wave phenomena have resisted analysis
for many years. During and just after World War II some progress was made on the equations
of gas dynamics, by exploiting the theory of characteristics and applying it to shock waves
(Courant & Friedrichs 1948). In addition, computers have become available, and they have
been used very successfully to solve many wave problems. Since then there have been two more
major advances: the development of modulation theory by Whitham (1965) and the
development of the inverse scattering transform method for solving the Korteweg-de Vries
(K.d.V.) equation by Gardner et al. (1967).

These four methods — characteristics, computers, modulation theory and the inverse scattering
transform — have provided the basis for most of the recent work on nonlinear waves.

p
[\ \

—
< Nevertheless all these methods are limited, so there is need for further development of them,
> > g
O - as well as for the development of other methods.
~ In the theory of linear wave propagation, short-wave asymptotic analysis has been

e

articularly successful. It has led to ray methods, such as the geometrical theory of diffraction,

Q) p y Yy g ry
O which have been used very widely. Asymptotic analysis has also been applied to nonlinear wave
= uw

propagation. For example, modulation theory has been derived by this means, and the
derivation reveals that the theory is in fact nonlinear geometrical optics. In addition, the K.d.V.
equation has been derived asymptotically from many other more complicated equations, or
systems, as the generic equation governing dispersive waves, just as the Burgers equation is
generic for dissipative waves. Furthermore, asymptotics has been used to solve the K.d.V.
equation in various ways.
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368 J.B.KELLER

I shall attempt to review some of the recent progress in the theory of nonlinear wave
propagation, emphasizing soliton generation, modulation theory and asymptotic analysis.

2. SOLITON GENERATION IN A TOWING TANK

A ship design is always tested by making a small-scale wax model of the ship hull, suspending
the model from a carriage so that it is submerged to the proper depth in the water in a towing
tank, and then towing the carriage along a track. In this way the ship model moves through
the water at the towing speed and creates a wave pattern behind it. These waves carry energy
away from the model and thus lead to the wave-making resistance of the hull. The pattern
rapidly achieves a permanent form when viewed from the carriage.

Recently, J. V. Wehausen and his collaborators at Berkeley reported some unusual wave
patterns that they observed in a towing tank filled to the shallow depth of 0.5 feet (15 cm)
(Huang et al. 1982). As the wave pattern began to form it spread out into a single wave across
the tank, detached itself from the ship and then travelled ahead of the ship as a solitary wave.
Then another such wave was generated, and so on. This occurred at values of the Froude
number Fr = U/+/gh from about 0.75 to about 1.3. Here U is the ship model speed, g is the
acceleration of gravity and 4 is the depth of water. For Fr < 1 the successive solitons decreased
in amplitude, but not for Fr > 1. At all values of /7, a shelf developed ahead of the model.
For Fr > 1.3, when no solitons are formed, a bore develops ahead of the model and travels
with it. This agrees with the fact that the maximum velocity of an isolated solition is
Cmax = 1.294/gh, so for Fr > 1.3 a soliton could not get away from the model.

Measurements of the period 7 of soliton generation showed that the dimensionless period
UT/his linear in the Froude number for 0.8 < Fr < 1.1. In addition, the dimensionless soliton
velocity ¢/+/ gh varied linearly with Frfor 0.8 < Fr < 1.2. Furthermore the resistance measured
on the model varied periodically in time, reaching a maximum at about the time a soliton left
the model.

These experimental results have been compared with the results of numerical calculations
on the following pair of equations of Boussinesq type derived by Wu (1981):

N+ (h+m) uy+n,u=0,

(1)
Uy + Uty +g77x —%hzuxxt = _pox/p

Here y = #(x, t) is the equation of the free surface, y = — /4 is the equation of the bottom, u(x, f)
in the depth-averaged horizontal velocity of the fluid, p is the fluid density, and p,(x, ) is the
pressure applied to the free surface. The calculations were done by Wu & Wu (1982) at
CalTech. They used the moving pressure distribution

bo(%,0) =/)0m%[l—cosgg(x+ Ut)], 0<x4+Ut<L, 2)
=0, elsewhere.
As initial conditions they took
7(x,0) = —py(x,0)/pg, u(x,0) = 0. (3)
The results of the calculations were similar to the experimental results. Solitons were
generated periodically at Fr = 0.9, 1.0 and 1.1, but not at Fr = 1.175, nor for larger Fr. In

[ 34 ]


http://rsta.royalsocietypublishing.org/

JA

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

GENERATION AND PROPAGATION OF SOLITONS 369

both the numerical and experimental results, behind the solitons there was a long region within
which the surface was smooth, followed by a region of waves oscillating about the mean surface
level. These calculations were repeated by R. C. Ertekin & J. V. Wehausen (unpublished work
on ship-generated solitons done at Department of Naval Architecture, University of California,
Berkeley (1983)) with similar results. In addition they solved the same problem by using
equations obtained from the theory of fluid sheets developed by Green & Naghdi (1976, 1977).
The two sets of results agreed with one another and with Wu’s results, for small disturb-
ances. However, for larger disturbances the Green—Naghdi equations gave reasonable results,
while Wu’s equations gave results that behaved wildly. This is presumably a consequence of
the fact that the Green—Naghdi equations conserve mass, momentum and energy exactly, while
Wu’s equations do not.

3. SOLITON GENERATION IN INITIAL-BOUNDARY VALUE PROBLEMS

The mathematical problems mentioned in §2 were initial value problems on the entire real
line with inhomogeneous terms in the equation. However, the physical problem of wave
generation by a moving model might also be formulated as a piston problem, which gives rise
to an initial-boundary value problem on the half line. Therefore, it is of interest to consider
some results for such problems.

Chu et al. (1983) have considered the following initial boundary value problem for the K.d.V.
equation:

ugtuu,tu,,, =0, t>0, x>0, (4)
u(x,0) = 0, (5)
u(0,¢) = uy(2). (6)

For u,(¢) they chose a trapezoidal pulse, i.e. one that increased linearly for a short time,
remained at the constant value ¢, for a long time, and then decreased linearly to zero in a short
time. They solved this problem numerically, by finite differences, for two different durations
of the period of constancy. In both cases solitons were produced: two for the shorter duration
pulse and three for the longer pulse. The initial solitons were nearly identical in the two cases.
Their speeds quickly approached the value 24, and their amplitudes approached 2u,. For the
longer pulse the second soliton was nearly the same as the first, but in both cases the final soliton
was smaller.

It seems clear from the results that the longer the pulse the more solitons it will produce,
and that they will all tend to the amplitude 2%, and speed 2u,, except for the final one. Chu
et al. also calculated solitons generated for the K.d.V.—Burgers equation, which contains the
extra term —vu,,.

Bona & Winther (1983) have proved existence and uniqueness theorems for the initial-
boundary value problem for the K.d.V. equation. However, there are no analytical methods
available for constructing such solutions, and obtaining them is a worthwhile goal. Therefore
it is of interest to consider the Fitzhugh-Nagumo equation of nerve conduction, for which there
are results due to Keener & Rinzel (1983). That equation, for the potential u(x, {) across the

nerve membrane, is
: Uy = Uy +u(l—u) (u—a)—v,}

(7)

v, = e(u—yv).
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370 J.B.KELLER

Here a4, € and 7y are constants with 0 <a <3}, €> 0 and y > 0, and v is a recovery current.
The signalling problem involves solving this equation for x > 0 and ¢ > 0 with the initial value
zero and with a prescribed current i/ at the input x = 0:

1y (0,8) = =31 (8)

It is known experimentally that nerves can transmit isolated pulses, and a train of them is
produced if I exceeds a threshold value /,. However, none are produced if I < /. It is known
analytically that the Fitzhugh—-Nagumo equation has pulse solutions and periodic travelling
wave solutions. It is found numerically that the initial-boundary value problem formulated
above agrees with experiments in yielding a train of pulses if / > I, and not otherwise.

Keener & Rinzel (1983) observed that for any /> 0 the boundary value problem above
has a time-independent solution U(x), which tends to zero at x = c0. They examined the linear
stability of that solution and showed that it is stable for / < I, and unstable for 7/ > I,, where
I, is a certain positive constant. At /, the solution undergoes a Hopf bifurcation, with the
emergence of a time-periodic solution of the linearized problem. The value of I, is close to the
numerically determined value of the threshold ;. This suggests an explanation of the results
observed experimentally and numerically.

To apply this analysis to the K.d.V. equation (4), we note that it has the following
time-independent solution, which decays at infinity:

Ulx) = —[x/2v/3+ (= U) M, x>0, (9)

Here U, is the value of U at x = 0, and (9) holds only with U, < 0. The variational equation
governing its linear stability is

v+ Uv,+ovU, +v,,, =0, x>0. (10)
The variables separate in (10), so with v(x, #) = e** w(x) the stability analysis reduces to the study
of the eigenvalues A of the ordinary differential equation

Aw+Uw, +wlU, +w,,, =0, x>0. (11)

The solution w must vanish at x = 0 and at ¥ = 00. This problem does not seem to have been
investigated.

There is no evidence that there is a positive threshold for the K.d.V. equation, and some
results indicate that there is none. In particular, the fact that (9) holds only for U, < 0, and
that there is no bounded time-independent solution for U, > 0, shows that then u(x, f) cannot
become time-independent for ¢ large. Thus there probably is soliton generation for all positive
boundary values U,. We shall return to this problem later from a different point of view.

Finally we consider the problem of the motion produced by a piston moving with the constant
velocity ¢ > 0. Then we seek a solution of (4) with the velocity « equal to ¢ at the piston, i.e.
u=catx=ct,and u = 0 at x = 4+ 00. We seek a solution of the form u = u(x—¢t) and we find
that « is determined by the equation

3\ (1w dw »
"_“=(Z) JO (w—1) (w+2)}"

This solution represents a steadily moving disturbance that decreases monotonically with
distance from the piston. It could represent the bore ahead of a moving ship in a canal. When
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GENERATION AND PROPAGATION OF SOLITONS 371

the ship stops moving, this disturbance might propagate onward as a solitary wave, such as
the one observed by Scott Russell (1844). A similar solution for the Boussinesq system (1) with
po=01s

_ 1-u/c -3
xhct=f [(w3_1+§;%}f+3)(1—w)+§‘c%}flnw] dw.
0

4. MODULATION THEORY OF NONLINEAR WAVE PROPAGATION

Suppose some partial differential equation, or system of such equations, has constant
coefficients. Then it may possess travelling plane wave solutions U(¢), which are functions of
one variable ¢ = k-x—wt. Here k is the wavevector, which points in the direction of
propagation, and  is the angular frequency of the wave. The partial differential equation
reduces to an ordinary differential equation for U(¢). The periodic solutions of this equation
yield periodic travelling plane waves. When the equation for U is of second order, the solution
has two constants of integration. One is an additive phase shift 4 because the equation has
constant coeflicients, and the other is a measure of the size of U and is called an amplitude a.
Thus the general solution is of the form U(¢+7,a).

Whitham (1965) devised a theory to determine how such waves propagate when they are
not necessarily plane, when their frequency and amplitude vary, and when the coefficients in
the equation are not constant. He sought a solution of the form u(x, ¢) = U[¢(x, ), a(x,t)] and
substituted it into the Lagrangian variational principle, which was assumed to govern the
system. Then he averaged the Lagrangian over a period of U. Upon varying this averaged
Lagrangian with respect to ¢ and a he derived a system of coupled partial differential equations
for these quantities. These are the modulation equations that describe the propagation of slowly
varying waves.

Subsequently Whitham’s student Luke (1966) showed that for a particular nonlinear wave
equation, the modulation equations could be derived by a systematic asymptotic expansion in
a small parameter. The parameter could be identified as the ratio of the wavelength to a typical
scale length associated with the variation of the medium or of the amplitude. Then Kogelman
& Keller (1973) showed how to do the same for a large class of equations, and to obtain higher
order terms. Later Flaschka et al. (1980) derived modulation equations for interacting wave
solutions of the K.d.V. equation.

In view of the success of modulation theory, there are various directions in which it should
be extended to make it more useful. I give three here.

(a) The theory does not describe how waves arise in initial and initial-boundary value
problems. Some initial and boundary layer solutions are needed to match the solution given
by modulation theory to the initial and boundary data.

(b) Methods for solving the equations of modulation theory are needed, since those equations
themselves are a system of nonlinear partial differential equations.

(¢) Theories of reflection, refraction, diffraction and scattering of nonlinear waves are needed
to extend the range of modulation theory to such problems.

Progress has been made on all of these topics, and I shall now describe some of it.

[37]
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5. AsYMPTOTIC SOLUTIONS OF THE K.D.V. EQUATION

Concerning (a), the main results have been achieved for the initial value problem for the
K.d.V. equation by using the inverse scattering transform. The results show that as ¢ becomes
large, the solution develops into separated solitons or travelling waves (Tanaka 1973), which
could then be followed further by modulation theory. However, modulation theory has not
been used in that case because the explicit behaviour of the waves is obtained from the exact
solution.

Lax & Levermore (1983) have studied the following form of the K.d.V. equation:

uy— 6uu, +€*u,,, = 0. (12)

They have evaluated the weak limit of the solution asymptotically as e->0 for non-positive
initial data. Venakides (1984) has extended their analysis to include positive data. The results
show that for a certain initial interval, 0 < ¢ < ¢, the solution u(x, ¢,€) of (12) tends to the
solution v(x, t) of

v,—6vv, =0, v(x,0) = u(x,0). (13)

The time ¢, is the time at which the solution of (13) ‘breaks’, i.e. first develops a singularity.
After that time waves are formed around the places where breaking occurs. The resulting
multiphase waves are described by parameters satisfying the modulation equations of Flaschka
et al. (1980). The fact that these waves have the waveform required by modulation theory has
been shown by Venakides (1984). The substitution U(x, ) = w(x/e, t/€) converts (12) into the
same equation for w with ¢ = 1. This shows that the preceding analysis applies to short waves,
for which modulation theory should hold. In fact, Gurevitch & Pitaevskii (1974) used
modulation theory to determine the waves formed near the time and place of breaking.

The preceding theory suggests a way to treat the initial-boundary value problem for the
K.d.V. equation (12). We assume that near the boundary as well as near the initial line, we
can drop the €2 term from (12) to get

v,—6v, =0, v(x,0)=u(x,0), v(0,¢)=u(0,?). (14)

We can solve (14) for v(x, t) by the method of characteristics until breaking occurs. Then by
adapting the analysis of Lax & Levermore, and of Venakides, we can determine the initial
behaviour of the waves that are produced near each breaking point. Their subsequent
propagation can be followed by the single phase or multiphase modulation equations.
Another asymptotic result for the K.d.V. equation is the determination of the long-time
behaviour of the solution of the initial value problem for step-like initial data. Hruslov (1976)
and Venakides (1984) considered (12) with € = 1 and initial data that tended rapidly enough
to —1 at x = —00 and to 0 at x = + 00. They showed that as ¢t->00 there are of the order of
% solitons produced. More precisely, Venakides found that for x > 4t—7y(¢) where y() < 4,
74} o
u(x, t) ~_N212SCCh2 [x—4t+(N+§+12~) lnt+bN]. (15)
Here « is a constant independent of N, and the 4, are constants. This result shows how each
soliton is effected by the others.
For the same kind of data, assumed to be monotonic in x, Lax & Levermore (1983) obtained

[ 38 ]


http://rsta.royalsocietypublishing.org/

S0
! B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

GENERATION AND PROPAGATION OF SOLITONS 373

more complete results for the long-time behaviour of #(x, ¢), the weak limit of the solution of
(12) as €—>0. They showed that as t—>o0,

a(x,t) ~—1, x<—6t,
~ S(x/t), —6t<x <4t (16)
~0, 4t<ux.

The function S(x/¢) is determined in terms of complete elliptic integrals. They obtained similar
results for other kinds of initial data.

All the results mentioned in this section show how the waves described by modulation theory
arise from the initial data. They all depend upon the exact solution provided by the inverse
scattering transform. We shall now describe a case in which the waves can be obtained from
the initial data by modulation theory itself.

6. SIMPLE WAVE SOLUTIONS OF THE MODULATION EQUATIONS

For the K.d.V. equation, Whitham’s (1965) modulation equations are hyperbolic. Gurevitch
& Pitaevskii (1974) observed that they have centered simple wave solutions. These solutions
can be used to solve the initial value problem for the modulation equations with the initial
data for u(x, ¢) being a step,

u(x,0) =—1, x> O,}
(17)

=0, x<O0.

The corresponding solution of the modulation equations for the amplitude 4, the wavenumber
k = ¢, and the mean height # is found to consist of functions of ¥/t alone. Suppose the original
equation is written as

U+ uuy,+ug,, = 0. (18)

Then the solution is found to satisfy

u(x,t) ~0, xft<—2 }

(19)
u(x, t) ~—1, —L<x/t

In the interval —2 < x/t < —3, u is expressed in terms of complete elliptic integrals.

There is no reason to believe that the modulation equations should hold near the
discontinuity in the initial data. However, they need not hold there for the preceding analysis
to apply. As long as the solution is of the centered simple wave form for x and ¢ large, that
method of solution determines it. Fornberg & Whitham (1978) solved the problem (17) and
(18) numerically and found that the solution (19), which they evaluated, described very well
the main features of the numerical results.

It has apparently not been noticed that the preceding method can be used to solve certain
initial-boundary value problems for the K.d.V. equation (18). For example, suppose the initial
and boundary data are

u(x,0) =0, x<0, (20)
u(0,8) =—1, t>0. (21)

[ 39 ]
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The solution of the modulation equations for this case is a centered simple wave. It is exactly
the same as for the initial value problem (17) and (18). Thus u(x, ¢) is given by (19) for x < 0.

7. WEAKLY NONLINEAR WAVES

One way to overcome the difficulty of solving the modulation equations is to consider weakly
nonlinear waves. A method for doing that, which goes beyond linear geometrical optics, was
developed by Hunter & Keller (1983) following the procedure devised by Choquet-Bruhat
(1969). The basic idea is to study waves in which the wave amplitude and the wavelength are
both small of the same order ¢, so that the solution is roughly of the form eu(x/€). Then
0,leu(x/€)] = u’(x/€) is of order unity, so a nonlinear term like uu, is of the same order as u.
This same idea was used by Chen & Keller (1973) to derive a K.d.V.-like equation for weak
waves in water of non-uniform depth.

The outcome of this theory is that waves travel along the rays of ordinary geometrical optics,
which are independent of the wave amplitude. However, the amplitude satisfies a nonlinear
equation along these rays. Thus the theory combines some of the simplicity of the usual ray
methods with some of the features of nonlinear propagation, such as waveform distortion,
harmonic generation, and shock formation. It has been used by Hunter & Keller (1984) to
treat weak shock diffraction by a wedge, so it provides a basis for developing a scattering theory
for weakly nonlinear waves. In addition, J. Hunter, A. Majda and R. Rosales, in unpublished
work, have extended the theory to describe the resonant interactions of systems of such waves.

This work was supported in part by the Office of Naval Research, the Air Force Office of
Scientific Research and the National Science Foundation.
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Discussion

A.D. D. Craik (Department of Applied Mathematics, University of St Andrews, U.K.). Professor
Keller has described very interesting experiments of Wehausen, which show that a train of
‘solitary waves’ sometimes propagate ahead of a body moving uniformly through shallow water.
I am reminded of a feature recently observed in some satellite photographs of cloud structure
over Jan Mayen Island, and shown to me by Professor R. Scorer. In addition to the familiar
‘ship-wave pattern’ of lee waves behind the island, there is sometimes a long dark band
stretching from the island in a direction roughly perpendicular to the wind. I wonder whether
this too could be a ‘solitary wave’.

J. B. KeLLER. These lee waves are internal waves in a stratified fluid, and there do exist solitary
internal waves. Such a wave would be stationary if the wind velocity was just opposite that
of the soliton. Therefore these velocities would have to be examined to see if they could fulfil
this condition.

J. T. Stuart, F.R.S. (Department of Mathematics, Imperial College, London, U.K.). Beyond the
Hopf-bifurcation point for the Fitzhugh—Nagamo equations, it should be possible to derive an
amplitude equation or time-evolution equation by means of weakly nonlinear multiple-scaling
theory. This would enable a study of the nonlinear time-dependent solution in that
neighbourhood.

P. L. CHRISTIANSEN (Laboratory of Applied Mathematical Physics, The Technical University of
Denmark, Denmark). Many soliton scattering problems in connection with the perturbed
sine—Gordon equation have been solved and used to explain the dynamical behaviour of
Josephson junction oscillators observed experimentally. Often the computational results are
very well predicted by soliton perturbation theory. Instabilities of linear modes give rise to
creation of soliton dynamic states. Modulation theory is used to account for the switching
between different branches of the current—voltage characteristic of the oscillator.

R. K. BurroucH (Department of Mathematics, UMIST, Manchester, U.K.). 1 would like to
comment on the suggested use of Whitham’s averaged Lagrangian method. In collaboration
with J. A. Armstrong (I.B.M., Yorktown Heights, New York), and following pioneering work
by J. C. Eilbeck in this Department in 1970-72, we made a substantial application of the
method in Manchester in 1975-78 (cf. Jack 1978; Bullough et al. 1979). The application was
to the problem of self-induced transparency : the propagation of nanosecond or shorter resonant,
or almost resonant, optical pulses in a nonlinear medium. The pulse envelopes finally prove
to be described by integrable equations that have multisoliton solutions and the pulses, which
can be observed (and have been observed by photodiodes), are fine examples of true solitons.
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The nonlinear medium is first described as good physics through the so-called coupled
Bloch—-Maxwell equations. These are not exactly integrable, but a multiple scales analysis shows
that a hierarchy of physically significant integrable equations is contained within them, namely
the ‘reduced Maxwell-Bloch’, the ‘self-induced transparency’, and the sine-Gordon equations
(Eilbeck et al. 1973). The multiple scales analysis is equivalent to what physicists call the slowly
varying envelope and phase approximation (s.v.e.p.a.) and both use the point that pulse
envelopes develop on a 107 s timescale, but the resonant carrier wave (the light) oscillates at
105 Hz. This is exactly the ‘two timing’ situation envisaged by Whitham, and because the
results should be integrable equations with well known soliton solutions (these are observed
after all!) the system is ideal for a test of Whitham’s averaged Lagrangian technique.

The fact is that we found this technique very difficult to apply successfully. The simplest
application of the technique (namely substitution of the travelling wave solutions into the
Lagrangian density and averaging over one cycle of the periodic travelling wave with amplitude
and frequency assumed constant over the interval) can be justified only as a zero-order
approximation in a formal perturbation scheme. The results obtained at this order were in good
agreement for small times with experiments on the self-steepening of pulses (Grischkowsky et al.
1973), but only sufficiently far from resonance. They agreed with the so-called ‘adiabatic following
approximation’; but in the longer term shocks developed (Armstrong 1975). These shocks are
entirely due to the approximation: there are no shocks in self-induced transparency where
nonlinearity is always balanced by dispersion.

To handle the technique correctly, dispersive terms must be introduced, and we followed
Yuen & Lake (1975) first of all (also see Chu & Mei (1970) for a heuristic argument in this
connection) to introduce terms into the averaged Lagrangian L, which experts will recognize
in the form }(G, A?+2G,, A, A,+ G, A%) (the field variable is the vector potential with
travelling wave amplitude A and A, = 04/0t, etc.). However, reference to adiabatic following
showed that this is not enough and further terms like K(Aw) 3 (4,, A—2A4?) (K is a constant)
also had to be inserted so that the ‘wave action’ equation could admit the necessary
hyperbolic secant (soliton) solution. But these additions to L also changed the dispersion relation
and ‘ conservation of waves’ condition and thus were unacceptable alone. Note in any case that,
since Aw is the frequency offset from resonance, these terms rapidly become ‘zero order’ as
resonance is approached. In fact to handle the resonance one must work at all orders of
perturbation theory of course. For circularly polarized light the travelling wave solutions are
trigonometric and it is actually possible to carry out this programme completely and rather
easily. However, for plane polarized light the travelling waves are Jacobian elliptic functions
and only a low-order theory was achieved. However, replacing the elliptic functions by
trigonometric functions led us to results in agreement with multiple scales and the s.v.e.p.a.
We were able to extend the technique to oppositely directed colliding pulses by a two-phase
Whitham-type analysis and agreement with the s.v.e.p.a. was again achieved at low order. But
to study the collision of oppositely directed pulses in a collaboration with experiment (see my
comment following the paper by Dr Mollenauer (this symposium)) we found ourselves obliged
to work to all orders again and could only do this through multiple scales (i.e. through the
s.v.e.p.a.).

In summary, the method of multiple scales (the s.v.e.p.a.) always works (if the physics is
right), but averaged Lagrangian techniques apparently designed for exactly the same physical
two-timing situation are extremely difficult to use near a resonance. We had to use the s.v.e.p.a.
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to guide the averaged Lagrangian through the resonance regions and this could actually be
done only because of special features associated with the trigonometrical travelling wave
solutions associated with circularly polarized light. The moral seems to be that averaged
Lagrangian techniques can only be used with caution and with profound understanding.
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